Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.073
Filtrar
1.
CNS Neurosci Ther ; 30(4): e14711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644551

RESUMO

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Assuntos
Antineoplásicos Alquilantes , Metilação de DNA , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Resistencia a Medicamentos Antineoplásicos , Temozolomida , Proteínas Supressoras de Tumor , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Metilação de DNA/efeitos dos fármacos , Camundongos Nus , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Camundongos , Masculino , Feminino , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Endopeptidases/metabolismo , Endopeptidases/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Ubiquitinação/efeitos dos fármacos
2.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612892

RESUMO

Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is the central molecular biomarker linked to both the response to temozolomide, the standard chemotherapy drug employed for GBM, and to patient survival. However, MGMT status is captured on tumor tissue which, given the difficulty in acquisition, limits the use of this molecular feature for treatment monitoring. MGMT protein expression levels may offer additional insights into the mechanistic understanding of MGMT but, currently, they correlate poorly to promoter methylation. The difficulty of acquiring tumor tissue for MGMT testing drives the need for non-invasive methods to predict MGMT status. Feature selection aims to identify the most informative features to build accurate and interpretable prediction models. This study explores the new application of a combined feature selection (i.e., LASSO and mRMR) and the rank-based weighting method (i.e., MGMT ProFWise) to non-invasively link MGMT promoter methylation status and serum protein expression in patients with GBM. Our method provides promising results, reducing dimensionality (by more than 95%) when employed on two large-scale proteomic datasets (7k SomaScan® panel and CPTAC) for all our analyses. The computational results indicate that the proposed approach provides 14 shared serum biomarkers that may be helpful for diagnostic, prognostic, and/or predictive operations for GBM-related processes, given further validation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Proteômica , Temozolomida/uso terapêutico , Proteínas Sanguíneas , Neoplasias Encefálicas/genética , O(6)-Metilguanina-DNA Metiltransferase , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
3.
Environ Int ; 186: 108645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615541

RESUMO

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Assuntos
Acetilcisteína/análogos & derivados , Benzeno , Ilhas de CpG , Metilação de DNA , Exposição Ocupacional , Humanos , Metilação de DNA/efeitos dos fármacos , Masculino , Exposição Ocupacional/efeitos adversos , Benzeno/toxicidade , Adulto , China , Dano ao DNA , Pessoa de Meia-Idade , Biomarcadores/urina , Acetilcisteína/urina , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
4.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607030

RESUMO

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Assuntos
Síndrome de Cockayne , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
5.
Front Immunol ; 15: 1362970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629071

RESUMO

Background: T cell exhaustion in the tumor microenvironment has been demonstrated as a substantial contributor to tumor immunosuppression and progression. However, the correlation between T cell exhaustion and osteosarcoma (OS) remains unclear. Methods: In our present study, single-cell RNA-seq data for OS from the GEO database was analysed to identify CD8+ T cells and discern CD8+ T cell subsets objectively. Subgroup differentiation trajectory was then used to pinpoint genes altered in response to T cell exhaustion. Subsequently, six machine learning algorithms were applied to develop a prognostic model linked with T cell exhaustion. This model was subsequently validated in the TARGETs and Meta cohorts. Finally, we examined disparities in immune cell infiltration, immune checkpoints, immune-related pathways, and the efficacy of immunotherapy between high and low TEX score groups. Results: The findings unveiled differential exhaustion in CD8+ T cells within the OS microenvironment. Three genes related to T cell exhaustion (RAD23A, SAC3D1, PSIP1) were identified and employed to formulate a T cell exhaustion model. This model exhibited robust predictive capabilities for OS prognosis, with patients in the low TEX score group demonstrating a more favorable prognosis, increased immune cell infiltration, and heightened responsiveness to treatment compared to those in the high TEX score group. Conclusion: In summary, our research elucidates the role of T cell exhaustion in the immunotherapy and progression of OS, the prognostic model constructed based on T cell exhaustion-related genes holds promise as a potential method for prognostication in the management and treatment of OS patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Análise da Expressão Gênica de Célula Única , Exaustão das Células T , Osteossarcoma/genética , Neoplasias Ósseas/genética , Imunidade , Microambiente Tumoral/genética , Proteínas de Ligação a DNA , Enzimas Reparadoras do DNA
6.
J Extracell Vesicles ; 13(4): e12428, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581089

RESUMO

It is well known that DNA damage can cause apoptosis. However, whether apoptosis and its metabolites contribute to DNA repair is largely unknown. In this study, we found that apoptosis-deficient Fasmut and Bim- /- mice show significantly elevated DNA damage and premature cellular senescence, along with a significantly reduced number of 16,000 g apoptotic vesicles (apoVs). Intravenous infusion of mesenchymal stromal cell (MSC)-derived 16,000 g apoVs rescued the DNA damage and premature senescence in Fasmut and Bim-/- mice. Moreover, a sublethal dose of radiation exposure caused more severe DNA damage, reduced survival rate, and loss of body weight in Fasmut mice than in wild-type mice, which can be recovered by the infusion of MSC-apoVs. Mechanistically, we showed that apoptosis can assemble multiple nuclear DNA repair enzymes, such as the full-length PARP1, into 16,000 g apoVs. These DNA repair components are directly transferred by 16,000 g apoVs to recipient cells, leading to the rescue of DNA damage and elimination of senescent cells. Finally, we showed that embryonic stem cell-derived 16,000 g apoVs have superior DNA repair capacity due to containing a high level of nuclear DNA repair enzymes to rescue lethal dose-irradiated mice. This study uncovers a previously unknown role of 16,000 g apoVs in safeguarding tissues from DNA damage and demonstrates a strategy for using stem cell-derived apoVs to ameliorate irradiation-induced DNA damage.


Assuntos
Vesículas Extracelulares , Animais , Camundongos , Senescência Celular , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA
7.
BMC Neurol ; 24(1): 103, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521933

RESUMO

BACKGROUND: MGMT (O 6 -methylguanine-DNA methyltransferase) promoter methylation is a commonly assessed prognostic marker in glioblastoma (GBM). Epigenetic silencing of the MGMT gene by promoter methylation is associated with greater overall and progression free survival with alkylating agent regimens. To date, there is marked heterogeneity in how MGMT promoter methylation is tested and which CpG sites are interrogated. METHODS: To further elucidate which MGMT promoter CpG sites are of greatest interest, we performed comprehensive searches in PubMed, Web of Science, and Embase and reviewed 2,925 article abstracts. We followed the GRADE scoring system to assess risk of bias and the quality of the studies we included. RESULTS: We included articles on adult glioblastoma that examined significant sites or regions within MGMT promoter for the outcomes: overall survival, progression free survival, and/or MGMT expression. We excluded systemic reviews and articles on lower grade glioma. fifteen articles met inclusion criteria with variable overlap in laboratory and statistical methods employed, as well as CpG sites interrogated. Pyrosequencing or BeadChip arrays were the most popular methods utilized, and CpG sites between CpG's 70-90 were most frequently investigated. Overall, there was moderate concordance between the CpG sites that the studies reported to be highly predictive of prognosis. Combinations or means of sites between CpG's 73-89 were associated with improved OS and PFS. Six studies identified CpG sites associated with prognosis that were closer to the transcription start site: CpG's 8, 19, 22, 25, 27, 32,38, and CpG sites 21-37, as well as low methylation level of the enhancer regions. CONCLUSION: The following systematic review details a comprehensive investigation of the current literature and highlights several potential key CpG sites that demonstrate significant association with OS, PFS, and MGMT expression. However, the relationship between extent of MGMT promoter methylation and survival may be non-linear and could be influenced by potential CpG hotspots, the extent of methylation at each CpG site, and MGMT enhancer methylation status. There were several limitations within the studies such as smaller sample sizes, variance between methylation testing methods, and differences in the various statistical methods to test for association to outcome. Further studies of high impact CpG sites in MGMT methylation is warranted.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/genética , Glioma/genética , Prognóstico , Proteínas Supressoras de Tumor/genética
8.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490327

RESUMO

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/farmacologia , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Quebras de DNA de Cadeia Dupla , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fator 3 Ativador da Transcrição/genética
9.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542081

RESUMO

Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC among Saudi women. DNA methylation was evaluated using methylation-specific PCR, whereas mRNA expression levels were assessed using qRT-PCR. We evaluated white blood cell (WBC)-BRCA1 methylation in 1958 Saudi women (908 BC patients, 223 OC patients, and 827 controls). MGMT methylation was determined in 1534 of the 1958 women (700 BC patients, 223 OC patients, and 611 controls). BRCA1 methylation was detected in 8.6% of the controls and 11% of the BC patients. This epimutation was linked to 13.8% of the early-onset BC patients (p = 0.003) and 20% of the triple-negative breast cancer (TNBC) patients (p = 0.0001). BRCA1 methylation was also detected in 14% of the OC patients (p = 0.011), 19.4% of patients aged <55 years (p = 0.0007), and 23.4% of high-grade serous ovarian cancer (HGSOC) patients. In contrast, the BRCA1 mutation was detected in 24% of the OC patients, 27.4% of patients aged ≥55 years, and 26.7% of the HGSOC patients. However, MGMT methylation was detected in 10% of the controls and 17.4% of the BC patients (p = 0.0003). This epimutation was linked to 26.4% of the late-onset BC patients (p = 0.0001) and 11% of the TNBC patients. MGMT methylation was also found in 15.2% of the OC patients (p = 0.034) and 19.1% of HGSOC patients (p = 0.054). Furthermore, 36% of the BRCA1-methylated patients and 34.5% of the MGMT-methylated patients had a family history of cancer, including breast and ovarian cancer. Notably, BRCA1 and MGMT mRNA levels were greater in the WBC RNA of the BC patients and cancer-free methylation carriers than in that of the OC patients. Our data indicate that BRCA1 and MGMT epimutations significantly contribute to the development of breast cancer and ovarian cancer in Saudi cancer patients. These blood-based biomarkers could help identify female patients at high risk of developing TNBC and HGSOC at an early age.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias da Mama/metabolismo , Arábia Saudita/epidemiologia , Regiões Promotoras Genéticas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Metilação de DNA , Fatores de Risco , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Predisposição Genética para Doença , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo
10.
Dokl Biochem Biophys ; 515(1): 41-47, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472668

RESUMO

High-throughput ribosome profiling demonstrates the translation of thousands of small open reading frames located in the 5' untranslated regions of messenger RNAs (upstream ORFs). Upstream ORF can both perform a regulatory function by influencing the translation of the downstream main ORF and encode a small functional protein or microprotein. In this work, we showed that the 5' untranslated region of the PRPF19 mRNA encodes an upstream ORF that is translated in human cells. Inactivation of this upstream ORF reduces the viability of human cells.


Assuntos
Biossíntese de Proteínas , Ribossomos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fases de Leitura Aberta , Regiões 5' não Traduzidas , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Nucleares/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo
11.
Mol Biol Rep ; 51(1): 433, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520591

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM), the most prevalent subgroup of neuroepithelial tumors, is characterized by dismal overall survival (OS). Several studies have linked O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation to OS in GBM patients. However, MGMT methylation frequencies vary geographically and across ethnicities, with limited data for South Asian populations, including Pakistan. This study aimed to analyze MGMT promoter methylation in Pakistani GBM patients. METHODS: Consecutive primary GBM patients diagnosed ≥ 18 years-of-age, with no prior chemotherapy or radiotherapy history, were retrospectively selected. DNA was isolated from formalin-fixed-paraffin-embedded tissues. MGMT promoter methylation was analyzed using methylation-specific PCR. Clinical, pathological, and treatment data were assessed using Fisher's exact/Chi-squared tests. OS was calculated using Kaplan-Meier analysis in SPSS 27.0.1. RESULTS: The study included 48 GBM patients, comprising 38 (79.2%) males and 10 (20.8%) females. The median diagnosis age was 49.5 years (range 18-70). MGMT methylation was observed in 87.5% (42/48) of all cases. Patients with MGMT methylation undergoing radiotherapy or radiotherapy plus chemotherapy exhibited significantly improved median OS of 7.2 months (95% CI, 3.7-10.7; P < 0.001) and 16.9 months (95% CI, 15.9-17.9; P < 0.001), respectively, compared to those undergoing surgical resection only (OS: 2.2 months, 95% CI, 0.8-3.6). CONCLUSION: This is the first comprehensive study highlighting a predominance of MGMT methylation in Pakistani GBM patients. Furthermore, our findings underscore the association of MGMT methylation with improved OS across diverse treatment modalities. Larger studies are imperative to validate our findings for better management of Pakistani GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Glioblastoma/patologia , Paquistão , Estudos Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilases de Modificação do DNA/genética , Metilação de DNA/genética , Enzimas Reparadoras do DNA/genética , DNA , Antineoplásicos Alquilantes/uso terapêutico , Proteínas Supressoras de Tumor/genética
12.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360994

RESUMO

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Endonucleases Flap/uso terapêutico , Exodesoxirribonucleases/genética , Enzimas Reparadoras do DNA/genética
13.
Brain Tumor Pathol ; 41(2): 50-60, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332448

RESUMO

A prompt and reliable molecular diagnosis for brain tumors has become crucial in precision medicine. While Comprehensive Genomic Profiling (CGP) has become feasible, there remains room for enhancement in brain tumor diagnosis due to the partial lack of essential genes and limitations in broad copy number analysis. In addition, the long turnaround time of commercially available CGPs poses an additional obstacle to the timely implementation of results in clinics. To address these challenges, we developed a CGP encompassing 113 genes, genome-wide copy number changes, and MGMT promoter methylation. Our CGP incorporates not only diagnostic genes but also supplementary genes valuable for research. Our CGP enables us to simultaneous identification of mutations, gene fusions, focal and broad copy number alterations, and MGMT promoter methylation status, with results delivered within a minimum of 4 days. Validation of our CGP, through comparisons with whole-genome sequencing, RNA sequencing, and pyrosequencing, has certified its accuracy and reliability. We applied our CGP for 23 consecutive cases of intracranial mass lesions, which demonstrated its efficacy in aiding diagnosis and prognostication. Our CGP offers a comprehensive and rapid molecular profiling for gliomas, which could potentially apply to clinical practices and research primarily in the field of brain tumors.


Assuntos
Neoplasias Encefálicas , Variações do Número de Cópias de DNA , Metilação de DNA , Glioma , Mutação , Proteínas Supressoras de Tumor , Humanos , Glioma/genética , Glioma/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Metilação de DNA/genética , Proteínas Supressoras de Tumor/genética , Variações do Número de Cópias de DNA/genética , Genômica , Metilases de Modificação do DNA/genética , Regiões Promotoras Genéticas/genética , Enzimas Reparadoras do DNA/genética , Feminino , Masculino , Perfilação da Expressão Gênica , Adulto , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
14.
Front Immunol ; 15: 1323307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404571

RESUMO

Introduction: In 2021, the World Health Organization published a new classification system for central nervous system tumors. This study reclassified the adult diffuse glioma (ADG) into astrocytoma, oligodendroglioma, and glioblastoma (GBM) according to the new tumor classification. Methods: The association of TERT promoter (pTERT) mutation, MGMT methylation, and CD47/TIGIT expression with patient prognosis was investigated. Results: Immunohistochemical analysis showed that the expression levels of CD47 and TIGIT in tumor tissues were significantly higher than those in normal brain tissues. CD47 levels were higher in GBM and grade 4 astrocytoma tissues. TIGIT expression was also higher in patients with GBM. The high expressions of CD47, TIGIT, and CD47/TIGIT were positively correlated with MGMT unmethylation but not pTERT mutation. Moreover, MGMT unmethylation was associated with poor overall survival in astrocytoma. High CD47, TIGIT, and CD47/TIGIT levels were associated with significantly reduced survival in ADG and GBM. GBM, MGMT unmethylation, and high CD47 expression were independent prognostic factors for overall survival in ADG. Discussion: Collectively, these results showed that the MGMT unmethylation and high levels of CD47 and TIGIT are associated with a poor prognosis in ADG. Patients with high CD47 and TIGIT expression may benefit from anti-CD47 and TIGIT immunotherapy.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Neoplasias Encefálicas/patologia , Antígeno CD47/genética , Glioma/patologia , Glioblastoma/genética , Prognóstico , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética , Receptores Imunológicos/genética
15.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38349040

RESUMO

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA , Proteínas de Xenopus , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/genética , DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Ativação Enzimática/genética , Fosforilação/genética
16.
Mol Biol Rep ; 51(1): 371, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411728

RESUMO

BACKGROUND: Cockayne syndrome is an inherited heterogeneous defect in transcription-coupled DNA repair (TCR) cause severe clinical syndromes, which may affect the nervous system development of infants and even lead to premature death in some cases. ERCC8 diverse critical roles in the nucleotide excision repair (NER) complex, which is one of the disease-causing genes of Cockayne syndrome. METHODS AND RESULTS: The mutation of ERCC8 in the patient was identified and validated using WES and Sanger sequencing. Specifically, a compound heterozygous mutation (c.454_460dupGTCTCCA p. T154Sfs*13 and c.755_759delGTTTT p.C252Yfs*3) of ERCC8 (CSA) was found, which could potentially be the genetic cause of Cockayne syndrome in the proband. CONCLUSION: In this study, we identified a novel heterozygous mutation of ERCC8 in a Chinese family with Cockayne syndrome, which enlarging the genetic spectrum of the disease.


Assuntos
Síndrome de Cockayne , Humanos , Povo Asiático , Núcleo Celular , Síndrome de Cockayne/genética , Enzimas Reparadoras do DNA/genética , 60562 , Mutação/genética , Fatores de Transcrição
17.
Environ Int ; 185: 108494, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364571

RESUMO

Hexavalent chromium [Cr(VI)] is a common environmental pollutant and chronic exposure to Cr(VI) causes lung cancer in humans, however, the mechanism of Cr(VI) carcinogenesis has not been well understood. Lung cancer is the leading cause of cancer-related death, although the mechanisms of how lung cancer develops and progresses have been poorly understood. While long non-coding RNAs (lncRNAs) are found abnormally expressed in cancer, how dysregulated lncRNAs contribute to carcinogenesis remains largely unknown. The goal of this study is to investigate the mechanism of Cr(VI)-induced lung carcinogenesis focusing on the role of the lncRNA ABHD11 antisense RNA 1 (tail to tail) (ABHD11-AS1). It was found that the lncRNA ABHD11-AS1 expression levels are up-regulated in chronic Cr(VI) exposure-transformed human bronchial epithelial cells, chronically Cr(VI)-exposed mouse lung tissues, and human lung cancer cells as well. Bioinformatics analysis revealed that ABHD11-AS1 levels are up-regulated in lung adenocarcinomas (LUADs) tissues and associated with worse overall survival of LUAD patients but not in lung squamous cell carcinomas. It was further determined that up-regulation of ABHD11-AS1 expression plays an important role in chronic Cr(VI) exposure-induced cell malignant transformation and tumorigenesis, and the stemness of human lung cancer cells. Mechanistically, it was found that ABHD11-AS1 directly binds SART3 (spliceosome associated factor 3, U4/U6 recycling protein). The interaction of ABHD11-AS1 with SART3 promotes USP15 (ubiquitin specific peptidase 15) nuclear localization. Nuclear localized USP15 interacts with pre-mRNA processing factor 19 (PRPF19) to increase CD44 RNA alternative splicing activating ß-catenin and enhancing cancer stemness. Together, these findings indicate that lncRNA ABHD11-AS1 interacts with SART3 and regulates CD44 RNA alternative splicing to promote cell malignant transformation and lung carcinogenesis.


Assuntos
Cromo , Enzimas Reparadoras do DNA , Receptores de Hialuronatos , Neoplasias Pulmonares , Proteínas Nucleares , RNA Longo não Codificante , Serina Proteases , Proteases Específicas de Ubiquitina , Humanos , Animais , Camundongos , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Processamento Alternativo , Carcinogênese/genética , Transformação Celular Neoplásica , Pulmão , Neoplasias Pulmonares/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
18.
J Med Chem ; 67(4): 2425-2437, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38346097

RESUMO

Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.


Assuntos
Dacarbazina , Receptores de Somatostatina , Humanos , Temozolomida/farmacologia , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/metabolismo , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral
19.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242327

RESUMO

Temozolomide (TMZ) is the most preferred and approved chemotherapeutic drug for either first- or second-line chemotherapy for glioma patients across the globe. In glioma patients, resistance to treatment with alkylating drugs like TMZ is known to be conferred by exalted levels of MGMT gene expression. On the contrary, epigenetic silencing through MGMT gene promoter methylation leading to subsequent reduction in MGMT transcription and protein expression, is predicted to have a response favoring TMZ treatment. Thus, MGMT protein level in cancer cells is a crucial determining factor in indicating and predicting the choice of alkylating agents in chemotherapy or choosing glioma patients directly for a second line of treatment. Thus, in-depth research is necessary to achieve insights into MGMT gene regulation that has recently enticed a fascinating interest in epigenetic, transcriptional, post-transcriptional, and post-translational levels. Furthermore, MGMT promoter methylation, stability of MGMT protein, and related subsequent adaptive responses are also important contributors to strategic developments in glioma therapy. With applications to its identification as a prognostic biomarker, thus predicting response to advanced glioma therapy, this review aims to concentrate on the mechanistic role and regulation of MGMT gene expression at epigenetic, transcriptional, post-transcriptional, and post-translational levels functioning under the control of multiple signaling dynamics.


Assuntos
Epigênese Genética , Glioma , Humanos , Temozolomida/uso terapêutico , Glioma/tratamento farmacológico , Glioma/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
20.
Mitochondrion ; 75: 101844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237647

RESUMO

Genomic investigations on an infant who presented with a putative mitochondrial disorder led to identification of compound heterozygous deletion with an overlapping region of ∼142 kb encompassing two nuclear encoded genes namely ERCC8 and NDUFAF2. Investigations on fetal-derived fibroblast culture demonstrated impaired bioenergetics and mitochondrial dysfunction, which explains the phenotype and observed infant mortality in the present study. The genetic findings from this study extended the utility of whole-genome sequencing as it led to development of a MLPA-based assay for carrier screening in the extended family and the prenatal testing aiding in the birth of two healthy children.


Assuntos
Mortalidade Infantil , Mitocôndrias , Lactente , Criança , Gravidez , Feminino , Humanos , Mitocôndrias/genética , Sequenciamento Completo do Genoma , Metabolismo Energético , Genômica , Fatores de Transcrição/genética , Enzimas Reparadoras do DNA/genética , Chaperonas Moleculares/genética , Proteínas Mitocondriais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...